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Abstract

The existence of a dense linear manifold of holomorphic functions on a Jordan domain
having except for zero maximal cluster set along any curve tending to the boundary with
nontotal oscillation value set is shown.
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1. Introduction and notation

Throughout this paper, we will use the following standard notations: N is the set
of positive integers, C is the complex plane, D == {zeC: |z| <1} is the open unit disk,
B(a,r) (B(a,r)) is the euclidean open (closed, resp.) ball with center ae C and radius
r>0. Moreover, if G is a domain (:= connected, nonempty open subset) of C, then
H(G) will stand for the space of holomorphic functions on G. It becomes a
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completely metrizable space (hence a Baire space) when it is endowed with the
compact open topology (see [11, p. 238-239]). Finally, if 4 is a subset of C then A
denotes its closure in C while 04 denotes its boundary in the extended complex plane
Co = Cu{w}. In particular, T will stand for the unit circle 0D.

A well-known interpolation theorem due to Weierstrass (see [14, Chapter 15])
asserts that if a domain G<C, a sequence {a,},-, = G with no limit points in G—i.e.,
tending to the boundary—and a sequence {w,},-, =C are prescribed, then there
exists a function f'e H(G) such that f(a,) = w, for all neN. In particular, if we
choose as {w,},-, an enumeration of the complex numbers having rational real and
imaginary parts then a function '€ H(G) with {f(a,) : neN} dense in C is obtained.
Since a dense set with finitely many points deleted continues to be a dense set, we get
a function f € H(G) with maximal cluster set along the set {a,},,, in the sense
expressed in the following paragraph. Note also that, equivalently, the density of
f(A) for some '€ H(G) can be achieved for every fixed nonrelatively compact subset
A of G.

Assume that G is a domain in C, that F' : G— C is a function defined on G and that
A is a subset of G. The cluster set of F along A is defined as the set

C4(F) = {weC :there exists a sequence {z,},-, <A tending to
some point of JG such that lim,_, o, F(z,) = w}.

It is clear that C4(F) is always closed and that if C4(F)#0 then A4 is not relatively
compact in G. The reader is referred to [5,13] for surveys of results about cluster sets.
If 1€ OG then the cluster set of F along A at t, is defined as

C4(F,19) = {weC :there exists a sequence {z,},-, =A tending to
such that lim,_, , F(z,) = w}.
Again, C4(F, 1) is always closed. In addition,

Ca(F) = | Ca(F,0).
tedG
If A = G then the subscript “A4” is often deleted and the expression “along A is
dropped.

It is an interesting problem to obtain holomorphic functions with maximal cluster
sets, that is, with cluster sets equal to C. In [1] it is shown that the functions f € H(G)
having maximal cluster set at every boundary point form a residual subset (i.e. its
complement is of first category) in H(G), while in [2] it is proved that for a prescribed

nonrelatively compact subset 4G the set {feH(G): f(4) = C} is residual in
H(G), from which it is easy to conclude that for 4 as before there exists a residual
subset of H(G) all of whose functions have maximal cluster set along 4. An
important special instance is that of a curve in G tending to the boundary, i.e., a
continuous map y : [0, 1) > G such that lim,_, |- y(u) = ® = the infinity point of the
one-point compactification of G or, equivalently, such that for each compact set
K <G there is uy = uo(K) €[0, 1) with y(u) e G\K for all u>uy (in particular if G = D
then y tends to the boundary if and only if lim,_, |- |y(x)| = 1). By abuse of language
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we sometimes identify y = 7([0, 1)). From the above-mentioned result of [2] and from
the fact that a countable intersection of residual subsets is again residual (so dense)
one can extract that if I' is a given countable family of curves in G tending to the
boundary then there is a dense subset M < H(G) such that C,(f) is maximal for all
feM and all yer.

In this paper, we obtain that at least for each Jordan domain there exists a dense
linear manifold of holomorphic functions having—except for zero—maximal cluster
set along any curve tending to the boundary with nontotal oscillation value set.
Hence, we can say that the set of functions with such approximation property is large
not only topologically but also algebraically.

2. The main result

By a Jordan domain we mean a domain in C whose boundary in C,, is a
topological image of the unit circle T. If G= C is a domain and 4 = G is nonrelatively
compact then its oscillation value set is the (nonempty) set

Osc (A) = {tedG : there exists a sequence {z,},-, =4
with lim,_, o, z, = £}.

We are now ready to state our main result.

Theorem 2.1. Let G be a Jordan domain. Then there is a dense linear manifold D in
H(G) such that for every f €D, except for zero, and every curve y< G tending to the
boundary with Osc (y) #0G we have C,(f) = C. In particular, f(y) is dense in C for
each pair f,y as before.

Proof. By the Osgood-Carathéodory theorem (see [9]) there exists an home-
omorphism ¢ from the C.-closure of G onto D whose restriction on G
is a holomorphic isomorphism from G onto . Then if D were the dense
linear manifold obtained for H(D) then the set D) := {fop: feD} would
be the desired linear manifold in H(G). This is easy. Suffice it to say that:
the (right) composition operator C,f = fe¢ is linear; for every compact subset
K< G the image ¢(K) is a compact subset of D and for every curve y< G tending
to the boundary dG with Osc(y)#0G we have that ¢@(y)cD is also a curve
tending to the boundary 9D with Osc(¢(y)) #0D. The remaining details are left to
the reader.

Hence, we may suppose that G=D from now on. Assume that {P:}~,
is a countable dense subset of H(D) (for instance, an enumeration of the
holomorphic polynomials having coefficients with rational real and imaginary
parts). Then we consider a sequence {P,},~, where each P; occurs infinitely many
times. We also fix two sequences {r,}, {s,} of positive real numbers satisfying
FM<S|I<In<$H<- <r,<s$,<--- and lim,_, ., r, =1 =1lim, ., o, s,. Let us divide N
into infinitely many strictly increasing sequences {p(n,j): j = 1,2, ...} (neN). For
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fixed neN we consider the set F,, =D given by the disjoint union
n 0
F,=B(0,— K;,
(0 n+ 1> U/,:LJ%”) /

where J(n) = min{je N: r;>.} and each K; is the spiral compact set

Si—

K; = {(rj + 4nrj0)exp(i0): 06[0,471}}.

Observe that each K; has connected complement and that the sequence {K_,»}jﬁ, goes
to T. Note also that every F, is closed in D. By D, we will denote the one-point
compactification of D, whereas @ will stand for its infinity point. A simple glance
reveals that D, \F, is connected (indeed, D\F,, is connected and D\F,, =D, \F, = the
closure in D, of D\F},) and locally connected at w (by a similar reason). In addition,
F, satisfies the following property: For every compact subset K <D there exists a
neighbourhood V' of w in D, such that no component of the interior FC of F,
intersects both K and V; indeed, F = B(0,;%7) and for any K we can choose V' =
{o} U {;i7<|z|<1}. Under these three topological conditions the Nersesjan theorem
(see [12] or [7]) asserts the existence of a function f, € H(D) approaching a given
continuous function g, : F,, »C with g, holomorphic in F,? within a prescribed error
function (= continuous positive function on F,) &(z). Let {q_,-}]lﬁl be any fixed dense

sequence in C. If we select ¢(z) == 17—1‘2‘ then we obtain

(2 — @) <2 ey, )

where g, : F,, — C is the function defined as

Pn(Z) if Z€B<O’n:l—l>7

g if ze K, and p(n,j)=J(n),
0 if ze Ky, (k#n) and p(k,j)=J(n).

gn(2) =

Observe that, trivially, g, is continuous on F,, and holomorphic in F,?, so Nersesjan’s
theorem applies properly.
Let us define D as the linear span

D = span {f,: neN}.

Of course, D is a linear submanifold of H(D), and D is dense because {f,},; is.
Indeed, from (1) we have that

1 = n
[fn(z) — Pn(Z)|<Z for all zeB(O,m)

Then if we fix a function P, there exists a sequence n <mpy < --- with P, = P; for all

j€N. Now if K< D is compact then there is joeN such that K < B(0, ;"5

) for every
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Jj>Jjo. Therefore

1
|f; (2) — Pj;(z)|<n— for all zeK and all j>jj,
J

m

in H(D) contains the dense set {P;;: meN}, which proves the density of {f,},~,.

It remains to show that for every prescribed curve y< G as in the hypothesis and
for every function /'€ D\{0} we have C,(f) = C. Note that for such function /" there
exist NeN and complex scalars 4j,...,4y such that Ay#0 and f = Af1 + - +
An fn- Since Osc () # T and y should escape towards T, this curve must intersect all
spirals K; except finitely many of them; indeed, if this were not the case then the
shape of K;s together with the continuity of y would force y to make infinitely many
windings around the origin while approaching T, which would contradict the
hypothesis Osc (y) # T. Therefore, there exists joeN such that p(k,jo)=J(N) (k =
1,...,N)and yn K, ;) #0 (7=)o). Choose points z;ey N Ky (=)o) Then by (1)
we obtain, for every j =y,

$0 fy, = Py, (j— 00) uniformly on compact in H (D). Hence, the closure of {f,: ne N}

1 —|z]

n(z) — g5l = v (z) — gn(z))] < <l—lz|l<l—r
and

1 —|z]

n(@)] = fa(z) = gn(z))| <
Hence we get
f (z) = Angil = afi(z) + - + Av fv(2) — vyl

<l-r (n=1,...,N—-1).

N-1
< Vvl v () = gl + 7 ()]
n=1

N
< <Z )vn|>(1 —1) =0 (j— o).
n=1

But since Ay #0 the sequence {/yg;: jeN} is dense in C, so for given aeC there is a
sequence {j; <j><---} =N with Ayg; - as k— co. Now we can select a sequence
{k(1)<k(2)<--}=Nand a point te T with w; == z; | > (I— 0). Then {w;} 2, <y
and f(w) = f(wi) = AnGj, + ANGjyy =0 (I 0), so aeC,y(f). In other words,
C,(f) =C, as required. O

In view of Theorem 2.1, two natural questions arise, namely

(a) Is it possible to replace the arbitrary curve y to an arbitrary sequence{z,},
tending to the boundary (even with Osc ({z,},-,)#0G)? The elementary
Proposition 2.2 below answers this question in the negative.

(b) It is clear that a similar result to Theorem 2.1 cannot hold if one desires that f
belongs to a subspace of bounded functions. But even without this boundedness
restriction the statement may be false. For instance, if f is in the Hardy space H”
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(see below) of the unit disk then Fatou’s theorem asserts that the radial limit
lim, 1~ f(re") exists and is finite for all 0 4, where 4 = Ay is a subset of [0, 27]
such that the Lebesgue measure of [0, 2n]\4 is zero, see [6]. Therefore C,(f) is a
singleton for each radial curve y = {re’: re[0,1)} (0€A). Nevertheless, making
a link to a motivating result mentioned in Section 1, we could ask whether at
least for a prescribed countable family of curves in D tending to T the assertion
of Theorem 2.1 holds in H?”. Theorem 2.5 below will provide this time a positive
answer, even without the restriction Osc (y)#T.

Proposition 2.2. If G=C is a bounded domain and feH(G) then there are a
point t€dG, a value 0o€C and a sequence {z,},-, =G tending to t such that
lim,, o f(z,) = a.

Proof. If f/ has infinitely many zeros then the result follows from the Analytic
Continuation Principle. Suppose now that /" has finitely many zeros. Define g = /P,
where P = 1 if f has no zeros whereas P(z) = (z —a;)---(z — a,) if ay, ..., a, are the
zeros of f, counting according their multiplicities. Then ¢ is in H(G) and has no
zeros. Let us fix a sequence {K,},~, of compact subsets of G which is exhaustive, in
the sense that its union is G and K, = K?, | (neN). Without loss of generality, we can
suppose K #0. Choose any point ae K?, so ae K? for all n. Since g has no zeros, the
Minimum Modulus Principle tells us that the minimum of |g| on K, is attained at

some point a, € 9K, therefore |g(a,)|<|g(a)|. Then

[f (an)| = |P(an)] - lg(an)| < M = |g(a)] - sup |P(z)]  (neN),

where M is finite because G is bounded. Summarizing, we have obtained a sequence
{a,},-, =G such that {f(a,)},~, is bounded. But the exhaustivity property of
{K,},-, implies that for a given compact set K =G there is npe N with K = K,,, so
{a,: n>ny} " K = (), whence the compactness of G leads us up to a point € G with
by,—t (n— o0) for some subsequence {b,},-, of {a,},- . Finally, the boundedness of
{f(bn)},, guarantees that f(z,) >o (n— o0) for some oeC and some subsequence
{za}zy of {bu},2,. O

Recall that a sequence 7, : X —> Y (neN) of continuous linear mappings between
two topological vector spaces X, Y is called universal or hypercyclic whenever there
exists a vector xe X—called universal for {T,},~,—whose orbit {T,x: neN} is
dense in Y. By U({T,}) we will denote the set of such universal vectors. If this set is
dense in Y then we say that {T,},”, is densely universal. See [8] for an excellent
survey (updated till 1998) about concepts, history and results related to this topic.
The following auxiliary result can be found in [3, Theorem 3.1].

Lemma 2.3. Assume that X, Y are metrizable topological vector spaces and that X is

Baire and separable. Suppose that, for each ke N, IEEED G 4 (neN) is a sequence of

continuous linear mappings between X and Y. Assume that for every k and every
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sequence {n;<my<---y<N the sequence { T,gf.C) }21 is densely universal. Then there

exists a dense linear manifold M < X such that

M\{0}<= () U{TPY).

keN

If 0<p< oo then the Hardy space H?” is the class of functions

2n ) do 1/p
feH (D) for which [[f]|, = sup ( If (re™) | ) < 0.
0

0<r<l 2n

It becomes a Banach space for 1 <p< oo when endowed with the norm |[f]|,. In the
1980s Bourdon and Shapiro were able to prove that for p = 2 there is a residual
subset of functions f € H? for which the orbit {f)": neN} is dense in H?, where "
is the nth-iterate of an automorphism i of D without fixed points in D (see [4,15,
Chapter 7], where many results of this kind can be found). Their proof equally works
for 1<p< oo because it is ultimately based on the facts that except for perhaps one
point of T the sequence ¥/"(z) tends to a constant value e T and that for every f¢ D
the collection Zz of polynomials vanishing at f is dense in H”, which in turn is a
consequence of Beurling’s approximation theorem, see [6, p. 113-114]. Now we
denote by ¢, (aeD) the automorphism of D given by ¢,(z) = {33 Observe that
S;ﬂ' =S, ,, where S, denotes the composition operator on H” generated by a

holomorphic self-mapping ¢ : D—D, that is, S,f =fo¢ for all feH?. It is a
straightforward exercise to check that if {a,},-, =D and a,—oeT then
@, (t)—>o (n—o0) for every teT\{—a}. Hence, in this case, we obtain for all
feZ, that ((f-e, )(t)), converges to f(x) = 0 at almost every point ¢ of T, and the
Bounded Convergence Lebesgue Theorem guarantees that S, f—0in H? (n— o)
for every f € Z,. Similarly, S, /' —0 for every f € Z_, in the same way. On the other
hand, recall that both Z, and Z_, are dense in H”. Thus, the Hypercyclicity
Criterion (see [8] or [15]) applies. This has been a sketch of the proof of the following
extension of Bourdon—Shapiro’s result.

Lemma 2.4. Let be prescribed a number pe |1, o) and a sequence {a,},-, <D tending
to a boundary point. Then the functions € H” for which the orbit {fo¢,: neN} is
dense in H? form a residual subset.

With the help of the latter two lemmas we can conclude this section by proving the
following theorem. We remark that since H”-convergence is stronger than local
uniform convergence, the manifold D obtained below becomes dense also in H(D).

Theorem 2.5. Suppose that pe(l, wo) and that T is a countable collection of curves in
D tending to the boundary. Then there is a dense linear manifold D in H? such that
C,(f) = C for every f e D\{0} and every yeT .
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Proof. Since I’ is countable, we can write I' = {y,: ke N} where each y, is a curve in
D tending to T, whence for every k we can pick a sequence {aﬁ,k): neN} <y, tending

to some point oy € T. If {n; <nmy<---} =N then we have also that aqu) — oy as j— o0.
Thus, by Lemma 2.4 the functions '€ H? for which the orbit {fo(pa(/f): jeN} is dense

in H? form a residual (so dense) subset of H” for every ke N. In other words, each
sequence {7, ,5,") };il (keN) is densely universal, where T¥) denotes the composition
operator fe H i f °P b eH?. But X = H? =: Y is a Baire metrizable separable
topological vector space, hence Lemma 2.3 yields the existence of a dense linear
manifold D<= H? such that D\{0} = ., U{TH}).

Finally, take a function feD\{0} and a curve y =y, el'. Then feu({T,Sk)}),
which implies that {f@ «: neN} is dense in H”, so in H(D). In particular, the set

{(foq)ag())(o): neN} = {f(af,k>): neN} is dense in {g(0): ge H(D)} =C. But

{a,(qk>: neN}cy and al 5o eT, so CcCy(f) and we are done. [

3. Final remarks

1. An important special case in the framework of the cluster sets is the radial one. If
G=D, tpcdD and 4 = {uty: uel0,1)} then we call radial cluster set at ty to
Co(F,t9) = C4(F) = C4(F,ty). Tenthoff has recently constructed (see [16,
Kapitel 3]) a dense set of functions fe H(D) satisfying the following property:
For every tyeT, every compact subset K <D with connected complement and
every continuous function g : K —C with ge H(K"), there exists a sequence of
functions ¢, : K—{uty: ue|0,1)}—not necessarily holomorphic nor continu-
ous—such that lim,, , ,(z) = #; for all ze K and f°t, — g uniformly on K. If we
choose specially K = {0} then it is derived the following particular case of
Theorem 2.1: There is a dense set of functions /'€ H(D) all of whose radial cluster
sets Cy(f, tp) are maximal.

2. In connection with the last remark the following question arises: Is the set
{feH(D): Cy(f,t) = C for all 1T} residual in H(D)? We do not know the
answer, but we are able at least to show the next result: The set
{feH(D): C,(f,t)) = C for all #, belonging to some residual set 4 = A, T}
is residual in H(D). Indeed, by [1] the functions f'€ H(D) with maximal cluster set
C(f, 1) at any fo e T is residual, and by Collingwood’s maximality theorem (see [5,
Theorem 4.8]) if F: D—C is continuous, y is a curve in D terminating at 1 (in
particular, y can be the radius [0,1)) and y, :=¢-y (teT) then C, (F,t) = C(F,1)
on a residual set (depending on F) of points £ on T.

3. Proposition 2.2 showed that at least for a bounded domain G<C, there is no
function in H(G) with maximal cluster set along any sequence {z,},-, = G tending
to the boundary dG. However, if we drop the amount of sequences {z,}, , then it
is possible to get a positive result. Given 4 =C, we denote by A’ the set of its
accumulation points in C, .
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Proposition 3.1. Let A be a nonrelatively compact subset of a domain G<C. Then
the set

M ={feH(G): C4(f,t) =C for all te A'nOG}
is residual in H(G).

Proof. Let {#},~, be a countable dense subset of A'nAG. For each k, we choose a
sequence {a,gk>}f:1 cA with @) > (n— o0). By [2], it is known that the sets

{feH(G): C, w neN}(f, tr) = C} (keN) are residual, hence by Baire’s theorem

{a":
D = m {fEH(G) C{az(xk): neN}(fv tk) = C}
keN

is residual.
Let feDand te A’ n9G. If we prove that C4(f, ¢) = C, then we would have f'e M.
Thus, DcM and M would be residual.

Let {w,},—, be a countable dense subset of C. By induction, we can construct an
increasing sequence {m,},~, =N such that

If (@) —wn\<% (k=1,....n; neN). (2)

my

Fix a value weC. There is an increasing sequence {i,},-; =N with
1
lwi, —w|<= (neN). (3)
n

The point ¢ is an accumulation point of the set
{a;’;): k=1,..,i; neN}

and there exist an increasing sequence {j(n)},_,=N and a sequence
{kn};ip 1<kn<i/(n), such that

a1 (no o).

i(n

Moreover, by (2) and (3),

kn k
V(a;(n,:g ) - W| < V(ain;(?i)) - M/ij(n)| + |vvi/(/l) - W|

(n)
1 1
iiy  J(n)

Hence we C4(f, 1) and C4(f,7) = C for any te A’ n9G. The proof is finished. O

Observe that if in particular we consider as A the union of the sets of points of
countably many prescribed sequences {a,(lk)};i <G (keN) with a1 (n—> o),
where {7};2, is a countable dense subset of dG, we obtain (from the proof) a

residual set of functions in H(G) with maximal cluster set along {a,&">};‘;1 at

tr (keN) and with maximal cluster set along {a,(qk>: n,keN} also at the rest of the
points € JG. This statement raises the following open problem: Assume that for each
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point te G we fix a sequence {ag,’)};f;l =G withd >t (n— o0). Is there any function
f e H(G) with maximal cluster set along {a,(f)}OO for any te9G?

n=1

4. In view of Theorem 2.1, it is natural to wonder whether there is an entire
function F : C— C such that C,(F) is maximal for every curve y tending to co.
This is false. In fact, every nonconstant entire function F satisfies
lim:- o F(z) = oo along at least one curve y— co, see [10, p. 159-161].

zey
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